

The state of the Paris	100		
Reg. No.			
PACKET AND I			
April 1			

II Semester M.B.A. (Day and Evening) Degree Examination,

December - 2022

MANAGEMENT

PRODUCTION AND OPERATIONS RESEARCH

(CBCS Scheme 2019-20 Onwards)

Paper: 2.6

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Calculators and Tables are allowed.

SECTION-A

Answer any FIVE questions from the following. Each question carries 5 marks.(5×5=25)

- 1. Briefly explain the Production System.
- 2. What is Plant Layout? Outline any two types of Plant Layout.
- 3. Solve the following Linear Programming Problem using Graphical method:

$$360x_1 + 240x_2 \le 5760$$

 $x_1 + x_2 \le 20$
 $x_1, x_2 \ge 0$

- Briefly explain the role of Quality Management in production.
- Summarise Inventory management with suitable examples.
- Calculate the vendor rating for the following:

The item under consideration is the same from all suppliers:

Suppliers Data	A	В	C
Quantity supplied	90	80	75
Quantity accepted	78	80	70
Price of each item (Rs.)	4	4.2	3.9
Delivery promised (in weeks)	6	6	6
Actual deliveries made (in weeks)	8	6.2	7

Weightage for Quality = 70%; Price = 2%; Delivery = 10%.

7. Briefly explain need and errors in Facility Location.

SECTION-B

Answer any THREE questions from the following. Each question carries 10 marks.

(3×10=30)

- "Production and Operation Research" increases creative and judicious capabilities of a 8. decision maker. Comment.
- Find the initial basic solution using Vogel's Approximation Method and test for optimality using MODI method:

		Destination					
		1	2	3	4	Supply	
Source	1	4	2	7	3	250	
	2	3	7	5	8	450	
	3	9	4	3	1.	500	
	Demand	200	400	300	300	7.500	

- 10. Write short notes on :
 - a) Replacement Models.
 - b) Materials Management.
- Solve the following problems:
 - Travelling salesman problem:

What should be the sequence of the Salesmans's visit, so that the cost is minimum?

Job Sequencing Problem : b)

Job	1	2	3	4	5
Machine A	5	1	9	3.	10
Machine B	2	6	7	8	4

Determine a sequence for the five jobs that will minimize the elapsed time.

 $(1 \times 15 = 15)$

SECTION-C

12. Compulsory Case Study:

For the following network problem:

	Completion Time (in weeks)				
Activity	t _o	t _m	t _e		
1-2	1		7		
1-3	1	4	7		
1-4	2	2	8		
2-5	_1_	1	1		
3-5	2	5	14		
4-6	2	5	8		
5-6	3	6	15		

- a) Draw the network diagram and identify critical path.
- b) What is the probability that the project will be completed:
 - i) At least 4 weeks earlier than the expected time?
 - ii) Not more than 4 weeks later than the expected time?
 - iii) If the project due date is 19 weeks, what is the probability of not meeting the due date?
 - iv) What is the probability that the project will be completed within 20 weeks?
 - v) Find the project duration at 90% probability?